'THE STEEL STORY' TEST

1 The Basic Oxygen Steelmaking process (BOS) can be represented by the following flow diagram.

- a Identify the substances X, Y, and Z by name. (3 marks)
- **b** During the oxygen blast, several non-metal elements besides carbon are converted into oxides, which then react to form a molten 'slag'.
 - i Give the formula of one oxide produced in this way. (1 mark)
 - ii What type of reaction results in the formation of slag? (1 mark)
 - **iii** During the oxidation process, carbon monoxide escapes as a gas and is collected. Suggest **two** reasons why the carbon monoxide is not released into the air. (2 marks)
- **c** The process can produce mild steel. Explain what *mild* steel is, and give **one** important property and **one** use. (3 *marks*)

[TOTAL: 10 MARKS]

(1 mark)

2 Samples of iron containing carbon as impurity can be analysed by titration with potassium manganate(VII) in acid solution.

In one such experiment, 1.00 g of impure iron was completely dissolved in dilute sulphuric acid, and the resulting solution containing iron(II) ions made up to 250 cm^3 .

A 25.0 cm³ portion of this solution reacted exactly with 12.9 cm^3 of a 0.0250 mol dm⁻³ solution of potassium manganate(VII). The half-equations for the redox reaction used in the titration are given below.

$$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$$

MnO₄⁻(aq) + 8H⁺(aq) + 5e⁻ \rightarrow Mn²⁺(aq) + 4H₂O(I)

- a State how the end-point of the titration is determined. (1 mark)
- **b** Calculate the percentage by mass of iron in the sample, using the following steps. (You may assume that the potassium manganate(VII) reacts only with the iron(II) ions.)
 - i Calculate the amount in moles of MnO₄⁻ ions added from the burette in the titration and used to oxidise the iron(II) ions present in 25.0 cm³. (2 marks)
 - ii Use the half-equations to deduce the amount in moles of Fe^{2+} present in the 25.0 cm³ portion.
 - **iii** Work out the mass of iron and hence the percentage of pure iron in the 1.00 g sample of impure iron. (*A*_r: Fe, 56) (3 marks)
- **c** Use the following half-equations and standard electrode potentials to explain why iron(II) ions, and *not* iron(III) ions, are formed when iron metal is added to dilute sulphuric acid. (4 marks)

FA/L

	E∜/V
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77

d Iron has an atomic number of 26. Draw out the 'electrons in a box' arrangements for the Fe^{2+} and

 Fe^{3+} ions. Use these to suggest why Fe^{2+} ions are readily oxidised to Fe^{3+} ions. (4 marks)

e Describe what you would see if excess sodium hydroxide solution were added to the solution of iron(II) ions in sulphuric acid. (2 marks)

[TOTAL: 17 MARKS]

3 In the early 19th century, cans made of tin-plated iron were first used to preserve food. Tin has the advantages that it corrodes much less readily than iron and can form a barrier that protects the iron. When the coating is scratched, however, the iron rusts faster when in contact with tin. Fortunately neither Fe²⁺ nor Sn²⁺ ions are toxic.

Standard electrode potentials for some relevant half-reactions are given in the list below.

	E ⁻ /V	
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44	Equation 3.1
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.14	Equation 3.2
$O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-(aq)$	+0.40	Equation 3.3
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77	Equation 3.4

E⊕\\/

- **a** State **two** substances that are necessary for iron to rust, and from which the iron is protected by the tin layer. (2 marks)
- **b** Any tin ions present encourage the iron to corrode because a reaction occurs involving the half-reactions represented by **Equations 3.1** and **3.2**. Write a balanced overall equation for this reaction. (1 mark)
- c i When iron starts to corrode, a reaction occurs involving the half-reactions represented by Equations 3.1 and 3.3. Write a balanced overall equation for this reaction, with state symbols. (3 marks)
 - ii When the surface of the iron is pitted, the half-reactions represented by **Equations 3.1** and **3.3** occur at different sites, with electrons flowing between these sites.

Mark on the diagram above the places where the half-reactions represented by **Equations 3.1** and **3.3** occur, and show the direction of flow of electrons between the two sites. (*3 marks*)

- d Two electrodes, whose half-reactions are represented by **Equations 3.2** and **3.4**, are put together to form an electrochemical cell.
 - i Draw a diagram of this cell, labelling the reagents and indicating how standard conditions are achieved. (4 marks)
 - ii Calculate the value of E_{cell} . (1 mark)
 - iii Describe how you would modify the cell to measure the *standard electrode potential* of the electrode whose half-reaction is represented by **Equation 3.2**. (2 marks)

[TOTAL: 16 MARKS]

(Adapted from OCR Chemistry (Salters), Paper 1, question 6, 1994)

© Salters Advanced Chemistry 2000 – see Copyright restrictions

4 Chlorine gas used to be manufactured from hydrogen chloride and oxygen, in the presence of a copper(I) compound. This involved two stages:

Stage A $4HCI + O_2 + 4CuCI \rightarrow 4CuCl_2 + 2H_2O$ Stage B $2CuCl_2 \rightarrow 2CuCI + Cl_2$

- a What is the role of the copper(I) compound in the production of chlorine? (1 mark)
- **b** The copper(I) ion has an outer electronic configuration of 3d¹⁰. Use this information to explain why copper(I) chloride is not coloured like copper(II) chloride. *(2 marks)*
- **c** The Cu²⁺ ion forms stable complexes with many ligands, some of which are shown in the table below, together with information about their stability constants, K_{stab} .

Complex ion of copper	<i>K</i> _{stab}	lgK _{stab}
[Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺	1.3×10^{13}	13.1
[Cu(en) ₂ (H ₂ O) ₂] ²⁺	4.0×10^{19}	19.6
[Cu(CN) ₄ (H ₂ O) ₂] ²⁻	2.0×10^{27}	27.3
[Cu(edta)] ^{2–}	6.3×10^{18}	18.8

en = 1,2-diaminoethane; edta = ligand produced from ethylenediamine-tetra-acetic acid. (For simplicity, the units of K_{stab} have been omitted from the table.)

i Choose from the examples above:

- 1 the formula of a neutral ligand; (1 mark)
- 2 the formula of a negatively charged ligand. (1 mark)
- ii The ligand 'edta' is described as *polydentate*. Explain what this means. (1 mark)
- iii What is the significance of the size of the stability constant? (2 marks)
- iv If each of the ligands in the above table, other than water, were added in turn to an aqueous solution of Cu^{2+} ions, what would be the formula of the resulting complex ion? (1 mark)
- **v** Sketch the shape you would expect for the complex ion $[Cu(NH_3)_4(H_2O)_2]^{2+}$. Label the ions and molecules that make up the structure. (3 marks)
- d The concentration of a solution of aqueous copper(II) ions can be found using a colorimeter.
 - i Explain why a blue solution looks blue when illuminated by white light. (1 mark)
 - **ii** You are given a colorimeter and a 0.10 mol dm⁻³ solution of Cu^{2+} ions. Describe what you would do to plot a calibration curve and measure the concentration of an unknown solution of $Cu^{2+}(aq)$. (4 marks)

[TOTAL: 17 MARKS]