Answers to The Steel Story End of Unit Test

Q	Answer with marks	Marking suggestions
1(a)	X magnesium sulphide (1) Y calcium oxide and/or magnesium oxide (1) Z aluminium oxide (1)	Allow correct formulae
1(b) (i)	$P_4O_{10}/P_2O_5/SiO_2(1)$	Allow SO ₂
1(b) (ii)	Acid-base (1)	
1(b) (iii)	It can be burnt as a fuel (1); it is toxic/harmful to life (1)	Allow causes smog
1(c)	Steel containing small amount of carbon (1) flexible/can be moulded (1) use: paper clip/car bodies/wire, etc (1)	Allow about 0.1% carbon

Q	Answer with marks	Marking suggestions
2(a)	When the first pink tinge remains (1)	
2(b) (i)	$(12.9 \times 0.025)/1000 (1); = 3.225 \times 10^{-4} (1)$	
2(b) (ii)	Answer to (b)(i) $\times 5 = 1.613 \times 10^{-3}$ (1)	
2(b) (iii)	Answer to (b)(ii) \times 10 \times 56 (1) = 0.903 g (1) includes unit and 2/3 sf Answer \times 100/1.00 = 90.3% (1) includes sf	
2(c)	Quote (or imply) $2H^+ + 2e^- \rightarrow H_2$; $E^e = 0$ (1) When Fe/Fe ²⁺ is connected to the above half-reaction in a cell, electrons flow to the half-cell with the more positive potential or since Fe/Fe ²⁺ is more negative than H ⁺ /H ₂ (1);Fe is changed (oxidised) to Fe ²⁺ (1) but Fe ²⁺ cannot be changed to Fe ³⁺ by H ⁺ (1)	ie (1) for good explanation of direction for one case. Answers just in terms of two potentials printed can score max (2) if explanation good
2(d)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2(e)	A (dark) green (1); precipitate (1)	

Q	Answer with marks	Marking suggestions
3(a)	Water (1); Air (oxygen) (1)	
3(b)	Sn^{2+} + Fe → Sn + Fe ²⁺ (1)	
3(c) (i)	$2Fe(s) + O_2(g) + 2H_2O(I) \rightarrow 2Fe^{2+}(aq) + 4OH^{-}(aq)$ (1) for correct species (1) for balancing (1) for state symbols if at least first mark scored	
3(c) (ii)	IRON Pit in iron containing electrolyte 3.1 (1) IRON Electron flow (1) 3.1 (1)	

150

3(d) (i)	High resistance voltmeter High resistance voltmeter V Salt bridge Fe ²⁺ (aq) (1) for left beaker; (1) for right beaker; (1) for salt bridge; (1) for standard conditions: all solutions 1.0 mol dm ⁻³ ; stated temperature usually 298 K; 1 atm pressure	Ignore any connections to terminals Accept 'unreative metal' in place of platinum
3(d) (ii)	0.91 V (1)	Ignore sign
3(d) (iii)	Description (or diagram) of standard hydrogen electrode replacing left-hand electrode: hydrogen gas over platinum electrode (1) standard conditions: 1 atm pressure, 1.0 mol dm ⁻³ H ⁺ (1)	Maximum (1) if not made clear that the hydrogen electrode replaces the Fe ³⁺ /Fe ²⁺ electrode

Q	Answer with marks	Marking suggestions
4(a)	Catalyst (1)	
4(b)	Colour is caused by movement of electrons within d sub-shells (1); this cannot happen in Cu^+ as d sub-shell is full (1)	
4(c) (i)	1. NH ₃ /H ₂ O/en (1) 2. CN ⁻ /edta ⁴⁻ (1)	
4(c) (ii)	More than one point of attachment (or words to that effect) to metal ion (1)	
4(c) (iii)	It indicates the stability of the complex (1); the higher the value, the more stable the complex compound compared to reactants (1)	
4(c) (iv)	$[Cu(CN)_4(H_2O)_2]^{2-}(1)$	
4(c) (v)	$H_{3}N = \begin{array}{c} H_{2}O \\ H_{3}N = \begin{array}{c} & \\ \\ H_{3}N \end{array} \\ H_{2}O \end{array} \\ H_{2}O \end{array} \\ NH_{3}$	
	 (1) for indication of octahedral structure (1) for Cu²⁺ (1) for 4 ammonia and 2 water molecules (in any positions) 	
4(d) (i)	It absorbs in the red/orange (1)	
4(d) (ii)	Make up a variety of Cu ²⁺ concentrations and measure their absorbance/transmittance in a colorimeter (1); using a red/orange filter (1); plot graph of absorbance/transmittance against concentration (1); from which concentration of unknown can be read from its absorbance/transmittance (1)	