Answers to From Minerals to Elements End of Unit Test

Q	Answer with marks	Marking suggestions
1(a)	Solution goes brown (1); as bromine is produced (1)	
1(b) (i)	-1 (1)	
1(b) (ii)	0(1)	
1(c) (i)	Loss of electrons (1)	
1(c) (ii)	$2Br^{-} \rightarrow Br_{2}^{-} + 2e^{-}(1)$	Allow $2Br^ 2e^- \rightarrow Br_2$
1(d) (i)	Electrolysis (1); of brine/seawater/named chloride solution (1)	Score separately
1(d) (ii)	$2Br^{-}(aq) + Cl_{2}(g) \rightarrow Br_{2}(aq) + 2Cl^{-}(aq)$ (1) for reagents correct (1) for products correct and equation balanced (1) for state symbols if equation balanced	
1(e) (i)	A white (1); precipitate (1)	
1(e) (ii)	$Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$ (1) for formation of AgCl (even if not an ionic equation or spectator ions shown and not cancelled) (1) for correct ionic equation (1) for state symbols if equation balanced	
1(f)	Protective clothing or words to that effect (1); prevent breathing of vapour or words to that effect (1)	
1(g)	Answer is $18/160 = 0.11(3) \text{ mol dm}^{-3}$ (1) for using correct M_r of Br ₂ (160) (1) for multiplying by ten (100 cm ³ to 1 dm ³) (1) for final answer (with <i>error carried forward</i>) with correct units and 2 or 3 significant figures	
1(h)	Photography, medicines, etc (1)	

Q	Answer with marks	Marking suggestions
2(a) (i)	It separates the mineral from unwanted material (1)	
2(a) (ii)	Roasting/heating (1); in air/oxygen (1)	
2(a) (iii)	 Large amounts of waste/tailings ponds, etc (1) Sulphur <i>dioxide</i> emissions (1) 	
2(b) (i)	d block/transition metals/elements (1)	
2(b) (ii)	Step 5 (1)	
2(c)	SiO_2 has giant/network structure (1); CO_2 has (small) molecules/ molecular structure (1); covalent bonds (between atoms in giant structure) make SiO_2 hard/solid (1); weak/intermolecular forces between molecules make CO_2 a gas (1) (1) mark for diagrams or further description of either structure	

Q	Answer with marks	Marking suggestions
3(a)	$2p^{6}3s^{2}3p^{6}3d^{10}4s^{1}$ (1) $2p^{6}3s^{2}3p^{6}3d^{9}$ (1) $2p^{6}3s^{2}3p^{4}$ (1)	Allow 3d ⁹ 4s ² , 4s ¹ 3d ¹⁰ ,etc
3(b)	Funnel, connected by clearly sealed joint to (1); a flask with a side-arm (1); labels: pump and filter paper (1)	
3(c) (i)	$\begin{array}{c} \text{CuS} + 1.50_2 \rightarrow \text{CuO} + \text{SO}_2 \\ +2 -2 & 0 \\ \end{array} \rightarrow \begin{array}{c} \text{CuO} + \text{SO}_2 \\ +2 -2 & +4 -2 \end{array}$	Max (3) if signs follow numbers
	(1) each, except only one mark for both copper oxidation states	
3(c) (ii)	Equation 3.2 (1) NH_4^+ (1) proton donor (1)	

3(d) (i)	Add an indicator (1); do several titrations (1); and <i>one</i> from (1): proceed drop by drop near end-point; do a rough titration first; use a white tile	
3(d) (ii)	21.3/25 (2); Answer (0.852 mol dm ⁻³) (1) including 3sf and units; allow error carried forward	Allow (1) for correct calculation of moles of HCl or correct expression for concentration of ammonia.
3(e)	Three-dimensional array of spheres (1); alternate spheres labelled Cu^{2+} and S^{2-} (1)	
3(f)	H H H H H H H H H H H H H H H H H H H	
	Positive copper (not necessarily 2+) surrounded by at least three water molecules (2); structure of water molecule clearly shown with δ^- on at least one oxygen (1)	Allow labelled blobs for water molecules for first mark