SALTERS ADVANCED CHEMISTRY "CHECK YOUR NOTES": MEDICINES BY DESIGN

Print the list below and tick the box supplied when you have covered the topic in your notes. Most of the points are covered in the *Chemical Ideas*, with supporting information in the *Storyline* or *Activities*. However, if the main source of information is the *Storyline* or an *Activity*, this is indicated.

1	The chemical principles behind methods which can be used to detect ethanol in the body (g.l.c. and i.r. spectroscopy) (Storyline MD1 ; Activity MD1.2).	
2	The following reactions involving aldehydes and ketones: formation by oxidation of alcohols, oxidation to carboxylic acids, reduction to alcohols and reaction with hydrogen.	
3	The mechanism of the nucleophilic addition reaction between an aldehyde or a ketone and hydrogen cyanide.	
4	The meaning of the terms: drug, medicine, molecular recognition, pharmacological activity, pharmacophore, receptor site, agonist, antagonist, lead compound (Storyline in general).	
5	The structure of a pharmacologically active material in terms of its functional components: pharmacore and groups which modify the pharmacore (Storyline MD3).	
6	The action of biologically active chemicals and how this relates to their interaction with receptor sites.	
7	The factors affecting the way that species interact in three dimensions: size, shape, bond formation and orientation (Storyline MD4).	
8	The role of chemists in designing and making new compounds for use as pharmaceuticals (Storyline MD3 , MD4 and MD5).	
9	The role of computer modelling techniques in the design of medicines (Storyline MD4).	
10	The identification of functional groups within a polyfunctional molecule as a way of making predictions about its properties.	
11	How to devise synthetic routes for preparing organic compounds.	
12	The use of the following terms to classify organic reactions: <i>hydrolysis</i> , <i>oxidation</i> , <i>reduction</i> , <i>condensation</i> and <i>elimination</i> .	
13	The classification of organic reactions according to their reaction mechanisms: nucleophilic substitution, electrophilic addition, electrophilic substitution, nucleophilic addition and radical.	
14	The use of a combination of spectroscopic techniques (m.s., i.r., n.m.r. and u.v. and visible) to elucidate the structure of organic molecules.	