SALTERS ADVANCED CHEMISTRY "CHECK YOUR NOTES" : ENGINEERING PROTEINS

1	Proteins are condensation polymers formed from amino acid monomers.	
2	The general structure of amino acids.	
3	The acid-base properties of amino acids and the formation of zwitterions.	
4	The formation and hydrolysis of the peptide link between amino acid residues in proteins (Storyline EP2 ; Activity EP2.2).	
5	The use of paper chromatography to identify amino acids (Activity EP2.2).	
6	The importance of amino acid sequence in determining the properties of proteins, and the diversity of proteins in living things (Storyline EP2).	
7	Stereo-isomers: <i>cis-trans</i> and optical isomers (enantiomers).	
8	The use of the term <i>chiral</i> as applied to a molecule.	
9	How nuclear magnetic resonance (n.m.r.) spectroscopy can be used for the elucidation of molecular structure.	
10	The interpretation of n.m.r. spectra for simple compounds given relevant information (Activity EP2.3).	
11	The expression for the equilibrium constant, K_c , for a given reaction.	
12	The way in which changes of temperature and pressure affect the magnitude of the equilibrium constant.	
13	The use of values of K_c , together with given data on equilibrium concentrations, to calculate the composition of equilibrium mixtures.	
14	The primary, secondary and tertiary structures of proteins (Storyline EP4).	
15	The role of hydrogen bonds and other intermolecular forces in determining the structure and properties of proteins (Storyline EP4).	
16	The double helix structure of DNA in terms of a sugar-phosphate backbone and attached bases (Storyline EP2).	
17	The significance of hydrogen bonding in the pairing of bases in DNA, and the replication of genetic information (Storyline EP2 ; Activities EP2.7 and EP2.8).	
18	How DNA encodes for the amino acid sequence in a protein.	
19	The use of empirical rate equations of the form: rate= $k[A]^m[B]^n$ where <i>m</i> and <i>n</i> are integers.	
20	The meaning of the terms: <i>rate of reaction, rate constant, order of reaction</i> (both overall and with respect to a given reagent).	
21	Experimental methods for measuring the rate of reaction.	
22	How to use experimental data to find the order of a reaction (zero, first or second).	
23	How to use given data to calculate half-lives for a reaction.	
24	The industrial importance of enzymes (Storyline EP6).	
25	The characteristics of enzyme catalysis, including: specificity, temperature and pH sensitivity, and inhibition (Storyline EP6).	
26	The specificity of enzymes in terms of a simple 'lock and key' model of enzyme action.	
27	The technique of 'genetic engineering' and its applications (Storyline EP3 and EP5).	