
Figure 3 If the 6.02 x 10 23 atoms in 12 g of
carbon were turned into marbles, the marbles
could cover Great Britain to a depth of 1500 km!



Figure 3 The mass spectrometer.

Figure 3 The mass spectrometer.

Figure 7 Variation of first ionisation enthalpy
with atomic number for elements with atomic
numbers 1 to 56.

Figure 8 Successive ionisation enthalpies 
for aluminium.
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Figure 9 Successive ionisation enthalpies 
for phosphorus.
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Figure 10 Energies of electron sub-shells from 
n = 1 to n = 4 in a typical many-electron atom.
The energy of a sub-shell is not fixed, but falls as
the charge on the nucleus increases as you go
from one element to the next in the Periodic
Table. The order shown in the diagram is correct
for the elements in Period 3 and up to nickel in
Period 4. After nickel the 3d sub-shell has lower
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Figure 15 Dividing up the Periodic Table.
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Figure 9 In a hydrogen molecule, the atoms are
held together because their nuclei are both
attracted to the shared electrons.
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Figure 2 The sodium chloride lattice, built up
from oppositely charged sodium ions and
chloride ions.

Figure 15 A model of metallic bonding.

Figure 13 Pauling electronegativity values for
some main group elements in the Periodic Table.



Figure 17 The relative sizes of atoms and ions.

Figure 18 Ions with higher charge densities
attract more water molecules 
(ions are only shown in two dimensions).
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Na+ ion is surrounded by 

5 water molecules
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+ 2+

Figure 19 Hydrated ions are much bigger than
isolated ions.
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Figure 36 Two isomers of alanine.
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Figure 1 Enthalpy level diagram for an
exothermic reaction, eg burning methane:
CH4 +2O

2
 g  CO

2
 + 2H

2
O.
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wire to ignite sample

air jacket

oxygen under 
pressure

crucible containing
sample under test

stirrer

Figure 3 A bomb calorimeter for making
accurate measurements of energy changes. The
fuel is ignited electrically and burns in the
oxygen inside the pressurised vessel. Energy is
transferred to the surrounding water, whose
temperature rise is measured.
Note that the experiment is done at constant
volume in a closed container. Enthalpy changes
are for reactions carried out at constant pressure ,
so the result needs to be modified accordingly.

energy taken in
from surroundings
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reactants
eg CaCO3
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Figure 2 Enthalpy level diagram for an
endothermic reaction, eg decomposing calcium
carbonate: 
CaCO

3
 g  CaO + CO

2
.  

∆H going this way...

... is the same 
as ∆H  going 

this way

CH4(g)

CO2(g) + 2H2O(I)

C(s) + 2H2(g) 

Figure 4 An enthalpy cycle for finding the enthalpy
change of formation of methane, CH4 .
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Figure 9 Breaking and making bonds in the reaction between methane and oxygen.
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Figure 14 A comparison of solids, liquids and
gases.
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Figure 15 Each electronic energy
level has within it several
vibrational, rotational and
translational energy levels. Note
that the levels are not to scale.
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Figure 21 An enthalpy cycle to show the
dissolving of an ionic solid.

Figure 26 Born–Haber cycle for sodium
chloride.
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Figure 27 Born–Haber cycles for sodium chloride and potassium chloride.
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Figure 27 Born–Haber cycles for sodium chloride and potassium chloride.
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Figure 2 What happens when an ionic substance
such as sodium chloride dissolves in water.

Figure 5 Polar water molecules attract the ions in
a solid lattice.

Figure 11 (a) The structure of diamond and (b)
the structure of graphite.

(a) (b)

Figure 12 Imagine you are inside a diamond. The
regular network structure would repeat in all
directions – as far as the edge of the diamond.

Figure 13 The fullerenes are a recently discovered
molecular form of carbon. 
(a) shows C60 , named buckminsterfullerene. 
It is made up of a mixture of 5-membered and 6-
membered rings and looks like a football
(b) is another way of presenting C60 , showing the
positions of the carbon atoms
(c) shows C70 , which is shaped like a rugby ball.
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Figure 14 On heating, the molecular substance
(represented by ) changes from a solid to a
liquid and then to a gas. Energy must be supplied
to overcome the intermolecular forces. Note that
the covalent bonds within the molecules remain
intact.

heat
m.p.

heat
b.p.

Solid  Liquid  Gas

δ+ δ –

At some instant, more of the electron
cloud happens to be at one end of the
molecule than the other; molecule
has an instantaneous dipole.

Electron cloud evenly 
distributed; no dipole.

Cl  Cl  Cl  Cl

Figure 15 How a dipole forms in a chlorine
molecule.

This atom is not yet 
polarised, but its 
electrons are repelled 
by the dipole next to it ...

Xe

This atom is 
instantaneously
polarised

Xeδ+ δ – Xeδ+ δ –

... so it becomes
polarised

Xeδ+ δ –

Figure 18 How an induced dipole is formed in a
Xe atom.
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Figure 23 The positively charged H atom lines
up with the lone pair on an F atom.
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Figure 25 The positively charged H atoms line
up with the lone pairs on the O atoms.

Key
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hydrogen
hydrogen bond

Figure 28 The arrangement of water molecules
in ice.



HEA T

easily broken by heating; polymer can
be moulded into new shape.

chains cannot be easily broken; polymer
keeps shape on heating.

polymer chain

cross–link

Figure 29 Thermoplastics and thermosets.

crystalline region

amorphous region

Figure 32 Crystalline and amorphous regions of
a polymer.
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Figure 36 A summary of the structures of
substances.

(a) Thermoplastic: no cross–linking

HEAT

Weak forces between polymer chains

(b) Thermoset: extensive cross–linking               Strong covalent bonds between polymer



Figure 3 Obtaining a line emission spectrum.

Figure 4 Obtaining a line absorption
spectrum.

electron has
been excited
to level 5,
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level 1

etc
level 5
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Figure 6 How the Lyman series in the
emission spectrum is related to energy
levels in the H atom.
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energy
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ELECTRONIC
ENERGY

VIBRATIONAL
ENERGY

ROTATIONAL
ENERGY

TRANSLATIONAL
ENERGY

Cl  H

Cl  H

Cl  H

Cl  H
Figure 7 An HCl molecule has energy associated
with different aspects of its behaviour.

Figure 16 The basic parts of a double beam
infrared spectrometer.
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Figure 21 Infrared spectrum of butane.
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Figure 23 Infrared spectrum of benzoic acid.
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Figure 22 Infrared spectrum of methylbenzene.
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Figure 37 A simplified diagram of an n.m.r.
spectrometer.
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Figure 36 The principle of n.m.r.: a small
magnet in a strong magnetic field can have two
different energies.
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Figure 43 N.m.r. spectrum of hexane.
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Figure 44 N.m.r. spectrum of trans-but-2-ene.
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Figure 45 N.m.r. spectrum of propan-1-ol.
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Figure 52 How light behaves with transparent
and opaque objects.
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transparent object

absorbs
red

transmits wavelengths corresponding
to other colours: appears green

reflects wavelengths corresponding to
other colours: appears orange

opaque
object absorbs blue

Figure 53 How colours arise from absorption of
light.

In
te

ns
ity

 o
f a

bs
or

pt
io

n

ultra violet visible        infra red

260 300 340 380 420 460 500 540 580 620 660 700
Wavelength/nm

ultra violet  visible
violet blue  green  yellow  red

infra red

Figure 57 The absorption spectrum of carotene
(in solution in hexane).

λ/nm

blue light is
transmitted

blue light  is
reflected
(Reflectance
spectrum
shown below)

opaque, 
coloured
object, 
eg painting

In
te

ns
ity

 o
f a

bs
or

pt
io

n

absorption spectrum

R
ef

le
ct

an
ce

reflectance spectrum

red and yellow light
is absorbed. (Absorption
spectrum shown below)

transparent
coloured
object, eg 
solution

600 700500400 600 700500400

paint layer absorbs
red and yellow
light

100

0

λ/nm
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excitation
energy  excited electronic state

energy absorbed
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Figure 63 The energy needed to excite an
electron in a coloured compound and in a
colourless compound.
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Figure 10 Ion-exchange columns are used to
soften water. The ion-exchange resin removes
calcium ions from the ‘hard’ water, and replaces
them with sodium ions to form ‘soft’ water.
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Figure 5 The pH scale.
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stays roughly
constant
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Figure 6 How a buffer solution keeps the pH
constant.
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Figure 2  The reaction of chlorine with potassium
iodide solution.

+

–
–

Cu2+ ion+

–

–

–

+

–
+

+

+

+

SO4
2– ion

–

Zn atom
Cu atom

– –

–

––

–

+

+

+ +

+

SO4
2– ion  –

+

Zn2+ ion+
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Figure 9 A copper–zinc cell.

Figure 9 A copper–zinc cell.

Figure 11 The standard hydrogen half-cell
(sometimes called a standard hydrogen
electrode).
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Figure 11 The standard hydrogen half-cell
(sometimes called a standard hydrogen
electrode).
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of Fe2+(aq) and 
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Figure 12 A standard half-cell for the
Fe3+(aq)/Fe2+(aq) half-reaction.



Figure 2 Enthalpy profile for an exothermic
reaction.
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Figure 4 Distribution curves for molecular
kinetic energies in a gas at 300 K and 310 K.

Figure 5 Distribution curve showing collisions
with energy 50 kJ mol–1 and above.

Figure 6 Distribution curves showing the effect
on the proportion of collisions with energy
50 kJ mol–1 and above of changing the
temperature from 300 K to 310 K.
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Figure 8 Apparatus for investigating the rate of
decomposition of hydrogen peroxide. The yeast
provides the enzyme catalase.

Figure 10 The decomposition of hydrogen
peroxide solutions of differing concentrations.

Figure 11 The initial rate of decomposition of
hydrogen peroxide plotted against concentration
of hydrogen peroxide.
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Figure 13 Finding half-lives, t½  , for the
decomposition of hydrogen peroxide.
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Second bond 
forms, and product 
diffuses away from 
catalyst surface, 
leaving it free to 
adsorb fresh 
reactants.
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Figure 18 An example of heterogeneous
catalysis. The diagrams show a possible
mechanism for nickel catalysing the reaction
between ethene and hydrogen to form ethane.
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Element Atomic number Electronic arrangement
3d
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3d sub-shell

outer shell
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Figure 20 Arrangement of electrons in the
ground state of elements of the first row of the d
block. [Ar] represents the electronic
configuration of argon.

force

(a)  (b)

force The open circles represent
atoms of iron.  The black
circles are the larger atoms
of a metal added to make an
alloy.

Figure 22 The arrangement of metal
atoms in a crystal (a) before and (b) after
slip has taken place. The shaded circles
represent the end row of atoms.

Figure 23 The arrangement of metal 
atoms in an alloy.
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Figure 24 Oxidation states shown by elements in
the first row of the d block. The most important
oxidation states are in boxes.



Figure 27 An octahedral complex of Fe(III). Coordination number 6.

Figure 28 A tetrahedral complex of Ni(II). Coordination number 4.

Figure 29 A square planar complex of Ni(II). Coordination number 4.

Figure 30 A linear complex of Ag(I).
Coordination number 2.

Figure 32
(a) Edta4–, a hexadentate ligand.
(b) The nickel–edta complex ion [Ni(edta)]2 –.
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Figure 33 Relative energy levels for the five 3d
orbitals of the hydrated Ti3+ ion.

Figure 36 The cis and trans isomers of
[Co(NH3)4Cl2]+ have different colours.

energy

Average energy

of 3d orbitals in

[Ti(H2O)6]
3+

if there was no 

splitting [Ti(H2O)6]
3+

ground state

3d level split

[Ti(H2O)6]
3+

excited state

light

hv ∆E

cis isomer: violet trans isomer: green

NH3

NH3

NH3

H3N

NH3 NH3

NH3

NH3

Cl

Cl

Cl

Cl

Co Co

++



Name Molecular Full structural Shortened Further
formula formula structural shortened

formula to

methane

ethane

propane

Table 2 Structural formulae of alkanes.

CH4CH4 H C H

H

H

C2H6 H C C

H

H

H

H

H

CH3CH3CH3 CH3

C3H8 H C C C

H

H H H

H H

H CH3CH2CH3CH3 CH2 CH3

109°

represents a bond in 
the plane of the paper

represents a bond in 
a direction behind
the plane of the paper

represents a bond in
a direction in front of
the plane of the paper
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H H
H

Figure 5 The three-dimensional shape of
methane.

a simpler way of drawing
ethane which shows the
shape less accurately
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Figure 6 The three-dimensional shape of ethane.

C C

H

H
H

H
H

H

Figure 7 The three-dimensional shape of butane.
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C–C bond length
0.139 nm
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Figure 11 The structure of the benzene ring.

Scale 0.1nm0

Figure 14 An electron density map for benzene
at –3 °C. The lines are like contour lines on a
map: they show parts of the molecule with equal
electron density.

Figure 15 Enthalpy changes for the
hydrogenation of benzene and the hypothetical
Kekulé structure.

regions of higher electron
density above and below
the benzene ring

Figure 16 The regions of higher electron density
above and below the benzene ring.
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Full structural                           Skeletal                   Name
formula                                      formula

1-chloropropane

1,2-dichloropropane

3-bromo-1-chlorobutane

Table 1 Naming halogenoalkanes.

Cl
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C

H

H C C

H
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Cl

H

H

Cl

Cl
H
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H

H C C

Cl

H

Cl

H

H

Cl

Br
H

C

H

H C C

Br

H

C

H

H

Cl

H

H

Table 3 Some common nucleophiles.

Full structural Skeletal Name
formula formula

propan-1-ol

propan-2-ol

pentan-3-ol

Table 4 Naming alcohols.

H
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H

H C C OH

H
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H C C H
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H C C C
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OH
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C H

H

H H

H

OH

Name and Structure, showing
formula lone pairs

hydroxide ion, 
OH–

cyanide ion, 
CN–

ethanoate ion, 
CH3COO–

ethoxide ion, 
C2H5O–

water molecule, 
H2O

ammonia
molecule, 
NH3

H

H H

H H
H

O

O

O

O

O

N

CH3

CH3CH2

N C

C



Table 6 Some examples of acid derivatives.

Acid derivative Dealt with in Section(s) Example

13.5 and 14.2

13.5 and 14.2

13.8

13.5 and 14.2

ester

acyl chloride

amide

acid anhydride

C

O

OR

C

O

Cl

C

O

NH2

C

O

O

C

O

ethyl ethanoate

ethanoyl chloride

ethanamide

ethanoic anhydride

CH3 C

O

O

CH3 C

O

Cl

CH3 C

O

NH2

CH3 C

O

O

CCH3

O

CH2CH3

Type of alcohol Position of —OH Example
group

primary at end of chain: propan-1-ol

secondary in middle of chain: propan-2-ol

tertiary attached to a carbon
atom which carries
no H atoms: 2-methylpropan-2-ol

CH3CH2 C OH

H

H

CH3 C CH3

H

OH

CH3 C CH3

CH3

OH

Table 7 Primary, secondary and tertiary alcohols.
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Figure 6 How to name an ester.

ethyl ethanoate

This part comes from
the alcohol and is

named after it

This part comes
from the acid and
is named after it

O

OCH3

CH3

CH2

C
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glycerol part −
always the same
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Figure 7 The general structure of the triesters
found in fats and oils.
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Figure 9 Representations of triglycerides.



carboxylic acid amine amide group
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Figure 18 Making a secondary amide.

acid groupamino group

α-carbon: the first carbon atom
attached to the –COOH group

H

R

H2N C COOH

Figure 20 The generalised structure of an α-amino acid.

Figure 21 How an amino acid forms a zwitterion.
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Figure 8 Reactions of arenes.
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