Figure 2 The structure of the atmosphere and the change in temperature with altitude.

Figure 5 The effects of sunlight on the skin.
Figure 9 Chloromethane (CH$_3$Cl) and bromomethane (CH$_3$Br) are given off from the oceans and by burning coal and vegetation. They are responsible for the small amounts of naturally produced chlorine and bromine in the stratosphere.

Figure 10 Plots of enthalpy changes as the reactants come closer together and form products.

Figure 17 ER-2 aircraft fly through the stratosphere loaded with scientific instruments. These graphs show measurements of ClO radicals (in parts per billion) and ozone (in parts per million) recorded at 18 km altitude. (Note that the concentrations of the two species are about 10^3 different.) The measurements are convincing evidence that Cl radicals are involved in ozone depletion.
Figure 18 (a) Maps like this are obtained every day by satellite and can be seen on the web (http://toms.gsfc.nasa.gov/). (b) The graph shows how the ozone concentration varies during the year over the Amundsen-Scott South Pole Station.

Figure 24 The radiation from the Sun which reaches the outer limits of the atmosphere and the radiation given off from the surface of the Earth (the frequencies and wavelengths are plotted here on a logarithmic scale, so each division is a factor of 10 greater than the one before).
Some infrared radiation emitted from the Earth's surface escapes and cools it down.

Some of the infrared emitted from the Earth's surface is absorbed by greenhouse gases, warming the troposphere.

Most of the solar radiation reaching the troposphere is absorbed by the Earth's surface, which warms up.

Most of the ultraviolet is absorbed by ozone in the stratosphere.

Some visible solar radiation is reflected by the Earth and clouds in the atmosphere.

Infrared radiation from the Earth.

Sun's radiation – mainly visible and ultraviolet.

Figure 26 The Earth – input and output of energy.
Sun’s radiation mainly visible passes through glass

Radiation emitted by the soil and plants; infrared is absorbed by glass

Sun’s radiation • mainly visible • passes through glass

Figure 27 Greenhouse warming.

Figure 32 The Earth’s radiation spectrum, showing the regions where CO$_2$ and H$_2$O absorb strongly.

AS LEVEL
Figure 35 The build up of CO₂ in the atmosphere as recorded at Mauna Loa Observatory, Hawaii.

Figure 38 The global carbon cycle. The numbers in boxes are reservoirs, showing the total mass of carbon (in Gt) in a particular part of the cycle; the numbers beside the arrows are fluxes, showing the rate of movement of carbon from one reservoir to another (in Gt year⁻¹). The amount of carbon in the atmosphere is growing at about 3 Gt per year; and that dissolved in the ocean surface at about 2 Gt per year.